

 REV.
 ECN - DESCRIP.
 DATE
 DRWN.
 CHKD.

 01
 3384
 04/29/15
 LJI

DRAWING FOR REFERENCE ONLY

D.O.T. Wall Stress Calculations:

 $S = P(1.3D^2 + 0.4d^2)/(D^2 - d^2)$

S = Maximum wall stress, psi

= 3775 [1.3 (9.157)² + 0.4 (8.735)²]

P = Test pressure, psi

(9.157)⁻ - (8.735)-

D = Outside diameter, inch

s = 69,759psi (481 MPa)

d = Inside diameter, inch

Required Minimum tensile: = 69,759 = 104,118 psi (717.9 MPa)

0.67

Note that the DOT Wall Stress Calculation is a theoretical based on Norris Drawing 901A-B-9105 - Model 8BC250.

MODEL	LENGTH 'L'		Min WATER CAPACITY		APPROX. WGT. W/O FITTINGS	
	ММ	IN	LITERS	IN ³	KG	LBS
8BC250P	1295	51	43.2	2640	52.2	115
*Vmin	708	27.9	21.7	1325	32	71
*Vmax	1727	68	TBD	TBD	TBD	TBD

*Note: Model 8BC250P is the design qualification test cylinder. Vmin and Vmax represent the range covered by the same design family.

SPECIFICATION: ISO 9809/1: 1999 DOT 3AA 2265

1. Service Conditions:

- -DOT rated service pressure: 156 bar (2265 psi)
- -ISO rated working pressure: 173 bar (2516 psi)
- -Hydraulic test pressure: 260 bar (3775 psi.)

2. Material:

Cr-Mo-Steel, Fully killed and made to fine grain practice by basic oxygen or electric furnace process.

Chemical Composition (%)

							Мо
Min.	0.28	0.15	0.40			0.80	0.15
Max.	0.33	0.30	0.60	0.020	0.020	1.10	0.25

Note: S+P < 0.030

3. Manufacture:

Hot billet extrusion followed by hot drawing

4. Heat Treatment: Quenched and Tempered

- -Austenitize: ~899°C (1650°F)
- -Quenchant: Water based polymer:

(temperature ≤ 60°C(140°F))

-Temper: ~627°C(1160°F) (Min. 30 minutes at temp.)

5. Mechanical Properties: (at room temperature)

- Tensile (Rg): 775 930 MPa (112.4 134.8 ksi)
- Yield (Re): ≥ 604.5 MPa (87.675 ksi)
- Elong (A): \ge 14% (ON 5.65 $\sqrt{S_0}$) \ge 20% on 2" G.L. for DOT
- Hardness: 225-270 BHN
- Flattening test: Flatten to Ø6 x t without cracks
- Charpy test (-50°C, Trans): $\geq 35 \text{ J/cm}^2$ (avg.)
- UT flaw detection: Each cyld. per ISO 9809-1
- Batch burst test: Pb ≥ 416 bar (6040psi)

6(a). Thickness Calculations: (ISO 9809/1: 1999)

$$a = 0.5xD\left(1 - \sqrt{\frac{(10FRe - \sqrt{3} Ph)}{(10FRe)}}\right)$$

Where:

Ph= Test Pressure (bar) = 260 bar (3775psi)

D = External diameter of container = $\emptyset 233$ mm

F = Lesser of 0.65/(Re/Rg) or 0.85; $Re/Rg \le 0.9$

= Lesser of 0.65/0.78 or 0.85 = 0.833 (for Re/Rq = 0.78)

$$a = 0.5x234 \left(1 - \sqrt{\frac{(10x0.833x604.5 - \sqrt{3}x260)}{(10x0.833x604.5)}}\right) = 5.35 \text{mm}$$

$$(0.2106")$$

NOTE: a', the guaranteed min thickness = 5.36mm (0.211") exceeds calculated min thickness, a.

Т	
Υ.	
v	

NORRIS CYLINDER COMPANY

P.O. BOX 7486 LONGVIEW, TEXAS 75607

REFILLABLE SEAMLESS STEEL CYLINDER FOR PERMANENT GASES PER ISO 11114-1

SCALE	NOT TO SCALE		DRAWING NO.	REV.
DWN. BY	R.S.	6/10/04	901A-A-9644	01
CHK'D BY			301A-A-3044	01
APP'D BY	R.S.	7/15/04	SHEET NO. 1 OF 1	SHEETS